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Abstract Shallow underwater acoustic (UWA) channel exhibits rapid temporal variations,
extensive multipath spreads, and severe frequency-dependent attenuations. So, high data rate
communication with high spectral efficiency in this challenging medium requires efficient
system design. Multiple-input multiple-output orthogonal frequency-division multiplexing
(MIMO–OFDM) is a promising solution for reliable transmission over highly dispersive
channels. In this paper, we study the equalization of shallow UWA channels when a MIMO–
OFDM transmission scheme is used. We address simultaneously the long multipath spread
and rapid temporal variations of the channel. These features lead to interblock interference
(IBI) along with intercarrier interference (ICI), thereby degrading the system performance.
We describe the underwater channel using a general basis expansion model (BEM), and
propose time-domain block equalization techniques to jointly eliminate the IBI and ICI.
The block equalizers are derived based on minimum mean-square error and zero-forcing
criteria. We also develop a novel approach to design two time-domain per-tone equalizers,
which minimize bit error rate or mean-square error in each subcarrier. We simulate a typical
shallow UWA channel to demonstrate the desirable performance of the proposed equalization
techniques in Rayleigh and Rician fading channels.
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1 Introduction

The interest in underwater acoustic (UWA) communications has grown steadily in the past
three decades because of its applications in oceanography, marine commercial operations,
underwater exploration, offshore oil industry and defense. Comprehensive research in these
years has led to improved performance and reliability of UWA communication systems. Sev-
eral review articles present an excellent overview of the progress made in this area [1,2].
The dominant features of the ocean environment that pose many challenges in designing
robust UWA communication systems include limited bandwidth, time-varying (TV) multi-
path, severe fading and low velocity of acoustic propagation. UWA channels vary greatly
depending on geometrical factors such as range, ocean depth, source/receiver depth, and
environmental factors.

Shallow UWA communication channel is defined as a channel with large range-to-depth
ratio. This channel is typically characterized by 1) a long delay spread resulting from the
repeated sound reflections from the sea surface and floor, and 2) a high Doppler spread result-
ing from relative motion of the transmitter/receiver and movement of transducers, ocean sur-
face, and internal waves. While most of the early high data rate experiments were reported
for vertical links in deep water channels, shallow water horizontal communication has made
significant progress only in the last decade.

Prior to 1990, UWA communication systems mainly relied on incoherent modulation and
detection, such as M-ary frequency-shift keying (MFSK) [3]. However, the incoherent sys-
tems usually suffer from unnecessary, often substantial, bandwidth and power inefficiencies
which makes them unsuitable for high-rate transmission. This forced the researchers to con-
sider the use of coherent modulation. The first approach that demonstrated the feasibility of
phase-coherent communication in horizontal shallow UWA channels was published in [4].
This approach employs the modulation schemes such as phase shift keying (PSK) along with
decision feedback equalization and multichannel combining. However, the long multipath
spread (of the order of 50 ms) and fast temporal variations of the shallow UWA channel often
makes this method too complex for real-time applications.

As an alternative, orthogonal frequency division multiplexing (OFDM) has been studied
for UWA communications. This is motivated by its successful applications in wireless com-
munication over radio channels. In an OFDM system, the available bandwidth is divided into
many subbands, so that the OFDM block duration is long compared to the multipath spread of
the channel. Consequently, interblock interference (IBI) may be neglected in each subband.
This considerably simplifies the complexity of channel equalization at the receiver. However,
to have a suitable OFDM system for UWA applications, two issues must be addressed: 1)
OFDM is sensitive to channel variations within a block which leads to intercarrier interfer-
ence (ICI). UWA channels have rapid time variations due to the low speed of sound relative
to the platform motion. Even in the absence of source/receiver motion, ICI could arise from
surface/internal waves, internal turbulence and tidal flows. 2) OFDM uses a cyclic prefix (CP)
larger than the maximum delay spread of the channel. The long delay spread encountered in
UWA channels requires a long CP which decreases the bandwidth efficiency of the system.
On the other hand, a short CP leads to IBI and ICI.

There have been several attempts to apply OFDM in UWA channels. In [5], the basic
concepts and characteristics of the coded OFDM for UWA communications are described.
Reference [6] presents the design criteria and analysis procedures of an OFDM system for
broadband UWA communications. Frassati et al. [7] conduct a shallow water experiment
to compare the performance of OFDM with direct sequence spread spectrum. A design of
DFT-spread OFDM system applied to an UWA channel is presented in [8].
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On the other hand, multi-input multi-output (MIMO) approaches have been recently
applied to UWA communications [9,10]. MIMO is a general communication technique in
which, multiple transmitting and receiving elements are used. This technique is utilized to
exploit the multipath nature of UWA channel to provide diversity, multiplexing, or antenna
gain, thereby improve the error performance, the bit rate, or the signal-to-interference-
plus-noise ratio (SINR), respectively.

More recently, a MIMO extension to the OFDM scheme is also explored in the underwater
context. In fact, MIMO and OFDM are parallel transmission schemes which exploit the space
and frequency domain diversities, respectively, to improve the data rate and spectral efficiency.
Li et al. [11] design a MIMO–OFDM system where null subcarriers are used for compensation
of Doppler shifts and a maximum a posteriori (MAP) or zero-forcing (ZF) detector is used for
MIMO demodulation. In [12] the performance of turbo-coded MIMO–OFDM systems with
layered space time architectures in UWA channel is investigated. Reference [13] introduces a
blind equalization approach for UWA MIMO–OFDM communication based on independent
component analysis. In [14], frequency and time correlation of the underwater channel are
exploited to obtain an adaptive channel estimation algorithm for MIMO–OFDM transmission.

The literature reviewed here, however, focuses mostly on the direct application of OFDM
or MIMO–OFDM in UWA communications. In most of this literature, a CP much larger than
the channel delay spread is used to avoid IBI. Using a long CP, decreases the spectral effi-
ciency. Also, some of these efforts assume that the time variations of the channel within each
OFDM block is slow enough to induce negligible ICI. On the other hand, the basic problem of
equalization and interference cancellation for both single-input single-output (SISO)—and
MIMO–OFDM transmission over wireless radio channels has been widely discussed. How-
ever, most of the works either discuss the impact of an insufficient CP [15] or the channel
rapid time variations [16]. Therefore, most of the already proposed approaches for wireless
radio channel cannot be directly applied in the context of underwater communications. These
facts motivate us to propose a MIMO–OFDM scheme appropriate for the general class of
UWA channels including shallow water channels, where both the ICI and IBI are present. In
comparison to the existing literature, this paper focuses on the following aspects:

(i) We consider a shallow UWA channel that exhibits large delay spread and Doppler
spread, simultaneously. We assume the CP is shorter than the channel delay spread
and the channel varies within each OFDM block. Then, we employ a general basis
expansion model (BEM) to approximate the UWA channel. The BEM coefficients,
which are assumed to be known at the receiver are used to design the equalizer. BEM
simplifies the equalizer design and reduces the complexity in channel estimation as
the problem is reduced to estimating the basis coefficients.

(ii) We propose time-domain block minimum mean-square error (MMSE) and ZF equal-
izers for MIMO–OFDM transmission in shallow UWA channel to jointly mitigate the
IBI and ICI.

(iii) We develop two time-domain per-tone equalizers which are based on bit error rate
(BER) or mean-square error (MSE) minimization criteria. We note that all of the
existing per-tone equalizers for OFDM, including our previous work [17], are fre-
quency-domain approaches, whereas in this paper we suggest the idea of time-domain
per-tone equalization.

(iv) We also show that our proposed time-domain per-tone equalizers are equivalent to the
proposed block MMSE approach. In addition, the proposed approaches do not rely on
a particular BEM for the UWA channel representation. Therefore, any BEM can be
used.
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Section 2 describes our system and data models. We derive time-domain block equalizers
in Sect. 3. Time-domain per-tone equalization is introduced in Sect. 4. Section 5, discusses
the complexity of the proposed approaches. In Sect. 6, we evaluate through computer simula-
tions, the performance of the proposed equalizers. Finally, conclusions are drawn in Sect. 7.

Notation We use bold upper (lower) case letters to denote matrices (column vectors). E{·}
stands for the expectation and ⊗ represents the Kronecker product. (·)∗, (·)T , and (·)H

represent conjugate, transpose, and Hermitian operators, respectively. We use diag{x} to
indicate a diagonal matrix with x as diagonal. Im denotes the m × m identity matrix, and
0m×p denotes the m × p all-zero matrix. Further, F indicates the unitary fast Fourier trans-
form (FFT) matrix; N is the FFT size; F (k) is the kth FFT matrix row; i is the OFDM block
time index and T is the sampling time.

2 System and Data Models

Consider a MIMO–OFDM system with Nt transmit and Nr receive transducers shown in
Fig. 1. We assume a simple spatial multiplexing scheme, in which the input data stream is
partitioned into Nt parallel substreams and each substream is mapped into frequency-domain
complex symbols and arranged into OFDM blocks of length N . Each block is then converted
to the time domain by means of an N -point inverse fast Fourier transform (IFFT) and extended
with a CP of length c. The time-domain blocks of parallel substreams are then transmitted in
UWA channel by Nt transmit transducers. At the receiver, time-domain equalization along
with FFT demodulation is performed to detect the transmitted symbols. Let x (t)k [i] be the
quadrature amplitude modulation (QAM) symbol transmitted on the kth subcarrier of the
i th OFDM block in the t th substream. The QAM symbols are assumed to be independent
and identically distributed (i.i.d) random variables with equal variance σ 2

s . The time-domain
sequence u(t)[n] transmitted from the t th transducer is given by

u(t)[n] = 1√
N

N−1∑

k=0

x (t)k [i]e j2π n̄k/N (1)

where i = �n/(N + c)�, and n̄ = n − i(N + c)− c.
The acoustic channel characterizing the link between the t th transmit transducer and the

r th receive transducer at time-index n and discrete time-delay θ is denoted by g(r, t)[n; θ ].
We assume that there is sufficient spacing between the transmit (receive) transducers
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Fig. 1 MIMO–OFDM system model
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relative to the channel coherence distance to ensure statistically independent channels for
each transmitter-receiver pair. Using the baseband description, we express the received sam-
ple sequence at the r th receive transducer at time-index n, y(r)[n] as

y(r)[n] =
Nt∑

t=1

+∞∑

θ=0

g(r, t)[n; θ ]u(t)[n − θ ] + ξ (r)[n] (2)

where ξ (r)[n] is the zero-mean complex Gaussian noise at the r th receive transducer. We
assume that the noise is independent of the transmitted sequence.

We use BEM to describe the UWA channel g(r, t)[n; θ ]. In BEM, the TV channel
g(r, t)[n; θ ] is modeled as a TV finite impulse response (FIR) filter h(r, t)[n; θ ] of order
L = �τmax/T � + 1, where τmax is the maximum delay spread of the UWA channel, and
each tap is approximated as the weighted sum of a few basis functions. Using BEM, we can
express the lth tap of the TV FIR channel between the t th transmit transducer and the r th
receive transducer for n ∈ { i(N + c)+ c + d − L ′ + 1, . . . , (i + 1)(N + c)+ d } as

h(r, t)[n; l] =
Q/2∑

q=−Q/2

h(r, t)
q,l ψq [n] (3)

where d is some synchronization (decision) delay, L ′ is a constant greater than or equal to

the channel order L ,
{

h(r, t)
q,l

}
are the BEM coefficients and

{
ψq [n]} are the basis functions.

The BEM coefficients remain invariant over a period of length (N + L ′)T .
Recently, BEMs have been widely used as a feasible representation of doubly selective

channels [18–21]. Different BEMs have different basis functions. In the discrete prolate
spheroidal BEM (DPS-BEM), the basis functions are the most significant eigenvectors of a
kernel matrix [18]. Polynomial BEM (P-BEM) uses a set of polynomial functions [19], and
the discrete Karhunen-Loveve BEM (DKL-BEM) uses the eigenvectors corresponding to the
largest eigenvalues of the channel covariance matrix [20]. Finally, in complex exponential
BEM (CE-BEM), basis functions are complex exponential (Fourier) functions [21]. In this
study, we use a general BEM as in (3) to characterize the underwater channel and design
the proposed equalizers. So, our formulation is general and can be applied using different
BEMs.

We substitute the BEM channel model in (2) to write the received sample sequence at the
r th receive transducer, for n ∈ {

i(N + c)+ c + d − L ′ + 1, . . ., (i + 1)(N + c)+ d
}

as

y(r)[n] =
Nt∑

t=1

Q/2∑

q=−Q/2

L∑

l=0

h(r, t)
q,l ψq [n]u(t)[n − l] + ξ (r)[n] (4)

The Eq. (4) is an approximation of the relation in (2) and is used only to simplify the
design of the proposed equalizers, deployed in the actual channel. Here we use a matrix
representation to express the received block of length N + L ′ at the r th receive transducer as

y(r)[i]=
Nt∑

t=1

Q/2∑

q=−Q/2

Ψ q [i]
[

O1, H(r, t)
q [i], O2

]
(I3 ⊗ P)(I3 ⊗ F H )

︸ ︷︷ ︸
G(r, t)[i]

⎡

⎣
x(t)[i − 1]

x(t)[i]
x(t)[i + 1]

⎤

⎦

︸ ︷︷ ︸
x̃(t)

+ξ (r)[i]

=
Nt∑

t=1

G(r, t)[i]x̃(t) + ξ (r)[i] = G(r)
T [i]x̃ + ξ (r)[i] (5)
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where i is the block index, y(r)[i] = [y(r)[i(N +c)+c+d −L ′+1], . . . , y(r)[(i +1)(N +c)
+ d]]T ,Ψ q [i] = diag { [ψq [i(N + c) + c + d − L ′ + 1], . . ., ψq ](i + 1) (N + c) +
d]] }, O1 = 0(N+L ′)× (N+2c+d−L−L ′), O2 = 0(N+L ′)× (N+c−d), H(r, t)

q [i] is an (N + L ′)×
(N + L + L ′) Toeplitz matrix with the first column [h(r, t)

q,L [i], 01×(N+L ′−1)]T and the first

row [h(r, t)
q,L [i], . . . , h(r, t)

q,0 [i] , 01 × (N+L ′−1)], x(t)[i] = [x (t)0 [i], . . . , x (t)N−1[i]]T , ξ (r)[i] =
[ξ (r)[i(N + c)+ c + d − L ′ + 1], . . . , ξ (r)[(i + 1)(N + c)+ d]]T , G(r)

T [i] = [G(r, 1)[i], . . .,
G(r, Nt )[i]], x̃ = [x̃(1) T , . . . , x̃(Nt ) T ]T and P is the CP insertion matrix given by

P =
[

0c×(N−c) Ic

I N

]

The data model in (5) is an extension of Eq. (10) in [22] to the MIMO–OFDM case with
the general BEM of (3). To derive this model, we assume that three successive blocks with
indices i − 1, i and i + 1 are transmitted. The i th block is of interest and the previous and the
following blocks are used to include the IBI from neighboring blocks in our model. Using
(5) and defining y[i] = [ y(1) T [i], . . ., y(Nr ) T [i]] T , G[i] = [G(1) T

T [i], . . ., G(Nr ) T
T [i]]T and

ξ [i] = [ξ (1) T [i], . . ., ξ (Nr ) T [i]]T , we can write the received blocks (each of length N + L ′)
at all receive transducers as

y[i] = G [i]x̃ + ξ [i] (6)

3 Time-Domain Block Equalization

In this section, we address time-domain block equalization to simultaneously mitigate IBI
and ICI for communication in the shallow UWA channel. We consider MIMO–OFDM trans-
mission and focus on the MMSE and ZF equalizers. At the receiver, we apply a bank of Nt

time-varying (TV) filters (equalizers) at each receive transducer (Fig. 2). The outputs of the
corresponding filters are combined and passed through the FFT-demodulator to recover the
transmitted blocks on different transmit transducers. In this sense, the TV filters G(r, a)
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Fig. 2 Proposed time-domain block MMSE equalizer
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for r = 1, . . . , Nr are designed and applied at the receive transducers to recover the trans-
mitted block on the ath transmit transducer for a = 1, . . . , Nt . Hence, we estimate the i th
transmitted block on the ath transmit transducer as

x̂(a)[i] = F
(

Nr∑

r=1

G(r, a)
e [i] y(r)[i]

)
(7)

Defining x [i] = [x(1) T [i], . . ., x(Nt ) T [i]]T , G(a)
e [i] = [G(1, a)

e [i], . . ., G(Nr , a)
e [i]] and

Ge[i] = [G(1) T
e [i], . . ., G(Nt ) T

e [i]] T , and considering the transmitted blocks on all transmit
transducers, we can extend (7) to obtain an estimate of x[i] as

x̂ [i] = (I Nt ⊗ F )Ge[i] y[i] (8)

Time-domain MMSE equalization amounts to finding the block equalizer Ge[i] such that
x̂[i] is closest to x[i] in the MMSE sense, i.e.

Ge,MMSE[i] = arg min
Ge[i]

E
{∥∥x[i] − (I Nt ⊗ F )Ge[i] y[i]∥∥2

}
(9)

At this point, we express the received sample sequence y[i] in another form to explicitly
include x[i]. In (5), x̃(t) can be written as a linear combination of the i th, (i − 1)st, and
(i + 1)st transmitted blocks on the t th transmit transducer as

x̃(t) = E−1x(t)[i − 1] + E0x(t)[i] + E1x(t)[i + 1] (10)

where E−1 = [I N , 0N×N , 0N×N ]T , E0 = [0N×N , I N , 0N×N ]T , and E1 = [0N×N ,

0N×N , I N ]T . We can extend (10) to include the transmitted blocks on all transmit trans-
ducers as follows:

x̃ =
⎡

⎢⎣
x̃(1)

...

x̃(Nt )

⎤

⎥⎦ = (I Nt ⊗ E−1)︸ ︷︷ ︸
E−1

⎡

⎢⎣
x(1)[i − 1]

...

x(Nt )[i − 1]

⎤

⎥⎦+ (I Nt ⊗ E0)︸ ︷︷ ︸
E0

⎡

⎢⎣
x(1)[i]
...

x(Nt )[i]

⎤

⎥⎦

+ (I Nt ⊗ E1)︸ ︷︷ ︸
E1

⎡

⎢⎣
x(1)[i + 1]

...

x(Nt )[i + 1]

⎤

⎥⎦ = E−1x[i − 1] + E0x[i] + E1x[i + 1] (11)

Substituting (11) in (6) and using the definition ν[i] = G [i]E−1x[i −1]+ G [i]E1x[i +1]
+ ξ [i] , we obtain

y[i] = G [i]E0x[i] + ν[i] (12)

Using (12), the solution of minimization problem in (9) is given by [23]

Ge,MMSE[i] = (I Nt ⊗ F H )Rx (G [i]E0)
H
(

G [i]E0 Rx (G [i]E0)
H + Rν

)−1
(13a)

= (I Nt ⊗ F H )
(
(G[i]E0)

H R−1
v G[i]E0 + R−1

x

)−1
(G[i]E0)

H R−1
v (13b)

where

Rν = E
{
ν[i]νH [i]

}
= G [i](E−1 Rx E

H−1 + E1 Rx E
H
1 )G

H [i] + Rξ ,

Rx = E
{

x[i]x H [i]
}
, Rξ = E

{
ξ [i]ξ H [i]

}
(14)
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Note that (13b) is obtained from (13a) by applying the matrix inversion lemma. For
white input data and noise with variances σ 2

s and σ 2
ξ , respectively (Rx = σ 2

s I (Nt N ),

Rξ = σ 2
ξ I Nr (N+L ′)), the MMSE equalizer reduces to

Ge,MMSE[i] = (I Nt ⊗ F H )E0
H

(
GH [i]G[i] + σ 2

ξ

σ 2
s

I (3N Nt )

)−1

GH [i] (15)

We can obtain the ZF solution by setting the signal power to infinity in the MMSE solution
(13b). Hence the ZF equalizer is obtained as

Ge,ZF[i] = (I Nt ⊗ F H )
(
(G[i]E0)

H R−1
v G[i]E0

)−1
(G[i]E0)

H R−1
v (16)

The existence of the ZF solution requires that the matrix G[i]E0 has full column rank. A
necessary condition for G[i]E0 to have full column rank is that the inequality Nr (N + L ′) ≥
Nt N is satisfied. For sufficiently large N , this inequality is satisfied when the number of
receive transducers is larger than or equal to the number of transmit transducers, i.e. Nr ≥ Nt .
Note that the MMSE solution always exists regardless of the number of receive transducers.
However, it is evident that the performance of the MMSE equalizer will improve if it is
designed in such a way that the corresponding ZF equalizer exist.

4 Time-Domain Per-Tone Equalization

In Sect. 3, we derived a time-domain block MMSE equalizer to combat the effect of the
UWA propagation channel. This equalizer estimates the transmitted blocks on all transmit
transducers as

x̂ [i] = (I Nt ⊗ F )Ge,MMSE[i] y[i] � Ḡe,MMSE[i] y[i] (17)

Equation (17) shows that the transmitted QAM symbol on each subcarrier can be esti-
mated using a linear combination of the received data samples of all receive transducers.
Here, we use this fact to propose two time-domain per-tone equalization methods based on
BER and MSE minimization, respectively.

4.1 BER Minimization Method

In this subsection, we first introduce a BER model and then, develop the equalization method.
Consider an M-QAM system with a square constellation of size M = 22m for some integer
m. This system can be viewed as two

√
M-pulse amplitude modulation (PAM) systems in

quadrature. The probability of symbol error for each
√

M-PAM system is [24]

P√
M = 2

(
1 − 1√

M

)
Q

(√
6

M − 1

γs

2

)
(18)

where γs is the average signal-to-noise ratio (SNR) of the M-QAM system and the Q-func-
tion is defined as Q(x) = (1/

√
2π)

∫∞
x exp (−x2/2) dx , x ≥ 0. In this study, we consider

4-QAM signaling and assume that the residual interference and noise at the output of each
subcarrier has Gaussian distribution. So, the BER for the kth subcarrier of the i th OFDM
block corresponding to the ath transmit transducer is obtained from (18) by substituting
M = 4 and γs =SINR(a, k)[i], which yields
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P(a, k)
bit [i] = Q

(√
SINR(a, k)[i]

)
(19)

where SINR(a, k)[i] is the average SINR on subcarrier k of the i th OFDM block for the ath
transmit transducer. Finally, we average the subcarrier BER (19) over used subcarriers to get
the total BER corresponding to the i th OFDM block and the ath transmit transducer as

P(a)
bit [i] = 1

Nu

∑

k ∈ Su

Q

(√
SINR(a, k)[i]

)
(20)

where Su is the set of used subcarriers with Nu elements.
We now develop a per-tone equalization method which minimizes the total BER in (20).

To estimate the transmitted symbol on the kth subcarrier of the i th OFDM block at the ath
transmit transducer, we can use the following linear combination in the time domain:

x̂ (a)k [i] =
Nr∑

r=1

w(r, a, k) T [i] y(r)[i] (21)

where w(r, a, k)[i] = [w(r, a, k)
0 [i], . . . , w(r, a, k)

N+L ′−1[i]] T . Using (5) and (10), we can rewrite
(21) as

x̂ (a)k [i] =
Nr∑

r=1

w(r, a, k)T [i]G(r, a)[i]E0x(a)[i]

+
Nr∑

r=1

w(r, a, k)T [i]G(r, a)[i]E−1x(a)[i −1]

+
Nr∑

r=1

w(r, a, k) T [i]G(r, a)[i]E1x(a)[i +1]

+
Nr∑

r=1

w(r, a, k) T [i]
Nt∑

t=1
t �=a

G(r, t)[i]x̃(t)

+
Nr∑

r=1

w(r, a, k) T [i]ξ (r)[i] (22)

Defining w(a, k)[i] = [w(1, a, k) T [i], . . .,w(Nr , a, k) T [i]] H and G(a)
R [i]=[G(1, a) T [i], . . .,

G(Nr , a) T [i]] T , we express (22) as

x̂ (a)k [i] = w(a, k)H [i]G(a)
R [i]E0︸ ︷︷ ︸

bH
1

[i]

x(a)[i] + w(a, k)H [i]G(a)
R [i]E−1︸ ︷︷ ︸

bH
2

[i]

x(a)[i − 1]

+w(a, k)H [i]G(a)
R [i]E1︸ ︷︷ ︸

bH
3 [i]

x(a)[i + 1] +
Nr∑

r=1

w(r, a, k) T [i]
Nt∑

t=1
t �=a

G(r, t)[i]x̃(t)

︸ ︷︷ ︸
w(a, k)H [i]b4[i]

+w(a, k)H [i]ξ [i] (23)
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Or equivalently

x̂ (a)k [i] = b∗
1, k[i]x (a)k [i] +

N−1∑

m=0
m �=k

b∗
1,m[i]x (a)m [i] +

N−1∑

m=0

b∗
2,m[i]x (a)m [i − 1]

+
N−1∑

m=0

b∗
3,m[i]x (a)m [i + 1] + w(a, k)H [i]b4[i] + w(a, k)H [i]ξ [i] (24)

where bj,m[i] and x (a)m [i] are the (m+1)th elements of vectors bj [i] and x(a)[i], respectively.
The first term in (24) contains the desired signal component and the second is the ICI

component. The third and fourth terms are IBI contributions from the previous and the fol-
lowing blocks, respectively. The fifth term is interference from other transmit transducers or
inter-transducer interference (ITI), and the last term is additive noise. We define the SINR
for the kth frequency bin of the i th OFDM block and the ath transmit transducer as

SINR(a, k)[i]= P (a, k)
s [i]/(P (a, k)

ICI [i] + P (a, k)
IBIp

[i]+P (a, k)
IBI f

[i] + P (a, k)
ITI [i]+P (a, k)

noise [i]) (25)

where P (a, k)
s [i] denotes the signal power and P (a, k)

ICI [i] is the ICI power. P (a, k)
IBIp

[i] and

P (a, k)
IBI f

[i] represent the IBI powers due to the previous and the following blocks, respec-

tively. P (a, k)
ITI [i] denotes the interference power caused by other transmit transducers and

P (a, k)
noise [i] is the noise power. Considering white input data and noise, we derive the power

terms as follows:

P(a, k)
s [i] = E

{∣∣∣x (a)k [i]
∣∣∣
2
}

E
{∣∣b∗

1, k[i]
∣∣2
}

= σ 2
s

∣∣∣bH
1 [i]e(k)

∣∣∣
2

= σ 2
s w(a, k)H [i]w(a)

k [i]w(a)H
k [i]w(a, k)[i]

P(a, k)
ICI [i] =

N−1∑

m=0
m �=k

E
{∣∣∣b∗

1,m[i]x (a)m [i]
∣∣∣
2
}

= σ 2
s

N−1∑

m=0
m �=k

∣∣∣bH
1 [i]e(m)

∣∣∣
2

= σ 2
s w(a, k)H [i]G(a)

R [i]E0

(
I N − e(k)e(k)T

)
E H

0 G(a)H
R [i]w(a, k)[i]

P(a, k)
IBIp

[i] = σ 2
s

N−1∑

m=0

∣∣∣bH
2 [i]e(m)

∣∣∣
2 = σ 2

s w(a, k)H [i]G(a)
R [i]E−1 E H−1G(a)H

R [i]w(a, k)[i]

P(a, k)
IBI f

[i] = σ 2
s

N−1∑

m=0

∣∣∣bH
3 [i]e(m)

∣∣∣
2 = σ 2

s w(a, k)H [i]G(a)
R [i]E1 E H

1 G(a)H
R [i]w(a, k)[i]

P(a, k)
ITI [i] = E

{∣∣∣w(a, k)H [i]b4[i]
∣∣∣
2
}

= w(a, k)H [i]R(a)b4
[i]w(a, k)[i]

P(a, k)
noise [i] = E

{∣∣∣w(a, k)H [i]ξ [i]
∣∣∣
2
}

= σ 2
ξ w(a, k)H [i]w(a, k)[i] (26)
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Fig. 3 Proposed time-domain per-tone equalizers, a Minimum BER method, b Minimum MSE method

where e(k) is the (k + 1)th unit vector of size N × 1,w(a)
k [i] = G(a)

R [i]E0e(k) and R(a)b4
[i] =

E {b4[i]bH
4 [i]}, where the (r1, r2)th element in this matrix is given by

[R(a)b4
[i]]

r1, r2
= σ 2

s

Nt∑

t=1
t �=a

G(r1, t)[i]G(r2, t)H [i] (27)

Substituting (26) in (25), yields

SINR(a, k)[i] = w(a, k)H [i]w(a)
k [i]w(a)H

k [i]w(a, k)[i]
w(a, k)H [i]

(
Rk[i] + σ 2

ξ

σ 2
s

I Nr (N+L ′)

)
w(a, k)[i]

(28)

where Rk[i] = G(a)
R [i] (E0(I N − e(k)e(k)T )E H

0 + E−1 E H−1 + E1 E H
1

)
G(a)H

R [i] + R(a)b4

[i]/σ 2
s . Our aim is to design the time-domain equalizers {w(a, k)[i]}k ∈ Su such that the total

BER in (20) can be minimized. However, note that the Q-function is always positive, so, it
is sufficient to minimize the P(a, k)

bit [i] for all k ∈ Su . This means that we can design the
equalizer w(a, k)[i] for each subcarrier, separately. Also, the Q-function is monotonically
decreasing. Hence, minimization of P(a, k)

bit [i] implies maximization of SINR(a, k)[i]. There-
fore, the time-domain per-tone equalizer corresponding to the kth subcarrier of the i th OFDM
block and the ath transmit transducer can be obtained by maximizing the SINR(a, k)[i] in
(28), which results in the following optimization problem

max
w(a, k)[i]

w(a, k)H [i]w(a)
k [i]w(a)H

k [i]w(a, k)[i]

subject to w(a, k)H [i]
(

Rk[i] + σ 2
ξ

σ 2
s

I Nr (N+L ′)

)
w(a, k)[i] = 1 (29)

This is a generalized eigenvalue problem whose solution is given by [25]

w
(a, k)
opt [i] =

(
G(a)

R [i]G(a)H
R [i] + σ 2

ξ

σ 2
s

I Nr (N+L ′) + Rb4 [i]
σ 2

s

)−1

w
(a)
k [i] (30)
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Figure 3a depicts the derived time-domain per-tone equalizer. The optimum SINR for the kth
subcarrier of the i th OFDM block and the ath transmit transducer is obtained by substituting
(30) in (28) which yields

SINR(a, k)
opt [i] = w

(a)H
k [i]w(a, k)

opt [i]
1 − w

(a)H
k [i]w(a, k)

opt [i]
(31)

Finally, substituting (31) in (20) yields the minimum BER corresponding to the i th OFDM
block and the ath transmit transducer.

4.2 MSE Minimization Method

The proposed per-tone equalization approach in Sect. 4.1, applies a separate equalizer for
the kth subcarrier of each transmit transducer in the time domain. Here, we propose another
time-domain per-tone equalization method which considers the kth subcarriers of all transmit
transducers and equalizes them simultaneously (Fig. 3b). In other words, we use an equalizer
matrix G(k)

e [i] to estimate the Nt transmitted symbols on the kth subcarriers of the i th OFDM
blocks at the Nt transmit transducers as

x̂k[i] = G(k)
e [i] y[i] (32)

where x̂k[i] is an estimate of xk[i] = [x (1)k [i], . . ., x (Nt )
k [i]]T . This equation shows that each

transmitted symbol is estimated as a linear combination of the samples of the received signals.
For each subcarrier, we can find the equalizer matrix G(k)

e [i] by minimizing the following
cost function

J [i] = E
{∥∥∥xk[i] − G(k)

e [i] y[i]
∥∥∥

2
}

(33)

Solving for G(k)
e [i] in (33), we obtain

G(k)
e,MMSE[i] = (I Nt ⊗ e(k)T )Rx (G [i]E0)

H (G [i]E0 Rx (G [i]E0)
H + Rν)−1 (34a)

= (I Nt ⊗ e(k)T )
(
(G[i]E0)

H R−1
v G[i]E0 + R−1

x

)−1
(G[i]E0)

H R−1
v (34b)

where (34b) is again obtained by using the matrix inversion lemma and Rx and Rν are defined
in (14). For white input data and noise, this per-tone equalizer reduces to

G(k)
e,MMSE[i] = (I Nt ⊗ e(k)T )E0

H

(
GH [i]G[i] + σ 2

ξ

σ 2
s

I (3N Nt )

)−1

GH [i] (35)

It can be proved that the time-domain per-tone equalizers proposed in this section are
mathematically equivalent to the time-domain block equalizer proposed in Sect. 3 (see the
“Appendix A”). Also, it can be shown that the proposed equalizers in Sects. 3 and 4 share
a common mathematical framework based on the maximization of a generalized Rayleigh
quotient. This framework unifies several earlier equalization methods for multicarrier trans-
mission [26].
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5 Complexity Analysis

In this section, we compare the complexities of our proposed equalization approaches. We
denote the proposed time-domain block MMSE equalizer as Prop-TBEQ. We also denote the
time-domain per-tone equalizers derived (in Sect. 4) based on BER and MSE minimization
as Prop-TPEQ1 and Prop-TPEQ2, respectively. Two types of complexity are considered:
design complexity and implementation complexity. The design complexity is the computa-
tional cost to design the equalizer. To design the Prop-TBEQ, we need a matrix inversion
of size (Nt N )× (Nt N ). This requires about O((Nt N )3) flops per i th transmitted blocks of
all transmit transducers. On the other hand, to design the Prop-TPEQ1, we require about
O(N 3

r (N + L ′)3) flops per i th transmitted blocks of all transmit transducers. So, the design
complexity of Prop-TPEQ1 is greater than the design complexity of Prop-TBEQ. The design
complexity of Prop-TPEQ2 is equal to the design complexity of Prop-TBEQ.

The implementation complexity is the computational cost to estimate the transmitted
blocks once the equalizer has been designed. For the Prop-TBEQ, to estimate the i th block
transmitted at the ath transmit transducer, we require Nr N (N + L ′)multiply-add (MA) oper-
ations plus O(N log2 N )MA operations for the FFT. Whereas Prop-TPEQ1 and Prop-TPEQ2
require Nr N (N + L ′)MA operations to estimate the i th block transmitted at the ath transmit
transducer. So, the implementation complexity of the proposed per-tone equalizers is less
than the implementation complexity of Prop-TBEQ.

6 Simulations

In this section, we provide simulation results to investigate the performance of the proposed
equalization techniques in a typical shallow UWA channel.

6.1 Simulation Setup

We consider a single-input multiple-output (SIMO)–OFDM system with Nr = 2 receive
transducers as well as a MIMO–OFDM system with Nt = 2 transmit transducers and Nr = 4
receive transducers. We assume that the receive (transmit) transducers are sufficiently spaced
above the UWA channel coherence distance, so the received signals experience uncorrelated
fading. Other parameters of the simulation are listed in Table 1.

Table 1 Simulation parameters Parameter Notation Value

Doppler spread fmax 50 Hz

Delay spread τmax 2 ms

Sampling time T 100µs

Number of subcarriers N 128

Cyclic prefix length c 14

Channel order L 20

Channel bandwidth B 10 kHz

Decision delay d 4

Discrete Doppler spread Q/2 2
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Recent experimental shallow UWA channel measurements used to examine several candi-
date fading models, indicate a good match with the Rician distribution [27]. Hence, we simu-
late the UWA channel as a Rician fading channel. We also consider the Rayleigh distribution
as a special case of Rician fading. Underwater experiments have shown that typical shallow
UWA channels have three prominent paths, namely the direct path, the bottom-reflected path,
and the surface-reflected path [28]. In addition, the underwater channel impulse response is
typically sparse, i.e., few propagation paths carry significant energy [29]. Thus, for testing
the proposed equalizers, we consider four paths between each transmit and receive trans-
ducer pair. We simulate a “perfectly sparse” channel with Na = 4 active taps or nonzero
fading coefficients spread over L = 20 chip durations. The active taps are at path delays
τ0 = 0, τ1 = 0.4, τ2 = 1.1, and τ3 = 2 msec and simulated using the model shown in
Fig. 4. In this model, each tap is independently generated by passing a complex Gaussian
random process with mean μe jϕr,t and variance 2σ 2

Rice through an FIR fading filter with
Gaussian-shaped power spectrum. The parameter ϕr,t is the phase of the direct path between
the t th transmit and the r th receive transducers. The normalized Gaussian Doppler power
spectrum is given analytically by

SG( f ) =
(

1/
√
π f 2

max

)
exp

(− f 2/ f 2
max

)
(36)

where fmax is the channel maximum Doppler spread and fc = fmax
√

ln 2 is the 3 dB cutoff
frequency. Furthermore, we consider an exponential delay power profile (DPP), i.e. the lth
tap power at delay τl is σ 2

l = c0 exp(−τl / τ rms), where τrms is the rms delay spread and c0 is
the normalization constant. We define the SNR as

SNR =

⎛

⎜⎜⎝(2σ
2
Rice + μ2)

L f∑

ı= 0

h̄2
ı + μ2

L f∑

j= 0

L f∑

ı= 0
ı �=j

h̄ı h̄j

⎞

⎟⎟⎠
Na−1∑

l= 0

c0 exp(−τl
/
τ rms)σ

2
s /σ

2
ξ (37)
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Fig. 4 Simulated model for shallow UWA channel
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where h̄ı is the ı th tap gain of the normalized impulse response of the fading filter and L f is
the order of this filter.

We represent the simulated (true) channel by BEM. Then we obtain the BEM coefficients
via least squares fitting of the simulated channel in the noiseless case. These coefficients are
then used to design the equalizers for the true channel. In this paper, we only provide the
simulation results for CE-BEM which is reasonably accurate and frequently used. However,
our paper formulation is based on a general BEM, so simulation of the proposed equalization
methods for other BEMs is straightforward. In CE-BEM, basis functions are complex expo-
nential functions as ψq(n) = e j2πqn/K , where K is the BEM frequency resolution [21]. The
number of TV basis functions Q should satisfy Q/(2K T ) ≥ fmax. Also we assume that the
BEM frequency resolution K is an integer multiple of the FFT size, i.e. K = P N , where P
is an integer greater than or equal to 1.

6.2 Simulation Results

First, we consider a SIMO-OFDM system with Nr = 2 receive transducers. Figure 5 com-
pares the BER performances of the proposed block equalization approaches for Rayleigh and
Rician fading channels when the BEM resolution is K = 2N . For Rician fading channel, the
Rician factor KR is defined as KR = 10log10(μ

2/(2σ 2
Rice)) and is chosen to be KR = 3 dB.

As a benchmark, we consider the case of OFDM transmission over TI frequency selective
channels where there is not any ICI or IBI. In this case, the one-tap MMSE equalizer is used
that is an extension of the one-tap approach in [30] for SISO-OFDM (see the “Appendix B”).
In addition, Fig. 5 illustrates the performance of the one-tap MMSE approach for doubly
selective channel. As shown in this figure, the one-tap MMSE equalizer failed to compensate
for the UWA channel distortion. However, proposed approaches provide significant inter-
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Fig. 5 BER comparison for SIMO-OFDM in Rayleigh and Rician channels, (Nr = 2, KR = 3 dB)
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Fig. 6 BER comparison for MIMO–OFDM in Rayleigh and Rician channels (Nt = 2, Nr = 4, KR = 3 dB)

ference cancellation. Furthermore, Prop-TBEQ outperforms the ZF equalizer in the case of
Rayleigh fading channel.

Second, we consider a MIMO–OFDM system with Nt = 2 transmit transducers and
Nr = 4 receive transducers to evaluate the performances of proposed equalizers for Ray-
leigh and Rician fading. The BEM resolution is chosen to be K = 2N and the Rician factor
is KR = 3 dB. Figure 6 depicts the simulation results. Similar to the SIMO case, this figure
illustrates that the one-tap MMSE approach failed to equalize the channel. It is also observed
that the proposed methods considerably outperform the one-tap MMSE equalizer. Comparing
Figs. 5 and 6 demonstrates the performance improvement when using MIMO transmission.
It is seen that an average SNR gain of 3–5 dB is obtained for the MIMO case over the
SIMO.

Third, we consider a SIMO-OFDM system with Nr = 2 receive transducers and
examine the effect of BEM resolution (K ) on the performance of equalization approaches
in Rician fading channel when Rician factor (KR) changes. Figure 7 shows the BER
performance of Prop-TPEQ1 for different values of Rician factor. As shown in this fig-
ure, for KR = −30 dB, where the fading is nearly Rayleigh, choosing K = N results in an
early error floor at BER = 1.4 × 10−3 and SNR = 18 dB. In this case, increasing the BEM
resolution to K = 2N , considerably improves the performance. Figure 7 shows that as the
Rician factor becomes larger, the difference between BER curves corresponding to K = N
and K = 2N decreases and the curves begin to get closer to each other. It is seen that for
KR = 10 dB, there is negligible difference between BER curves for K = N and K = 2N .
This simulation indicates that in Rician fading UWA channels, the BEM resolution has much
less effect on the BER performance of Prop-TPEQ1 compared to Rayleigh fading channels.
Other proposed equalizers show the same behavior.

Finally, we consider MIMO–OFDM transmission with Nt = 2 transmit transducers and
Nr = 4 receive transducers to investigate the performance of Prop-TPEQ2 for a typical
sparse channel. In the above simulations, we used a “perfectly sparse” channel. Here we
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consider a more realistic “sparse” channel. To simulate this channel, 10 % of each active-tap
energy is leaked into its neighboring inactive taps. The BER performance of Prop-TPEQ2
for different fading distributions and BEM resolutions is depicted in Fig. 8. For Rayleigh
fading, when K = N , Prop-TPEQ2 significantly outperforms the one-tap MMSE. However,
it suffers from an early error floor at BER = 10−3 and SNR = 16 dB. One can observe that this
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problem is resolved and the performance is significantly improved for K = 2N . For Rician
fading (with KR = 3 dB), in contrast to the Rayleigh fading case, the BER performance of
Prop-TPEQ2 for different BEM resolutions (K = N , 2N ) are almost the same and there is
no early error floor.

7 Conclusion

In this paper, we addressed equalization of shallow underwater acoustic (UWA) channels
when a MIMO–OFDM transmission system is used. We considered a general case where the
channel delay spread is larger than the CP and the channel varies within each OFDM block.
We proposed two time-domain block equalizers based on MMSE and ZF design criteria.
We also proposed two time-domain per-tone equalization approaches, which optimize the
performance on each subcarrier separately. The per-tone approaches were derived by mini-
mizing the BER or MSE. A significant advantage of our proposed methods is that they need
no redundancy or bandwidth expansion except for the CP. Moreover, it can be shown that the
proposed equalizers fit into a unified framework for time-domain equalizers.

Our simulations showed that the proposed approaches considerably outperform the con-
ventional one-tap MMSE equalizer. For UWA channels with Rayleigh fading distribution,
increasing the BEM resolution beyond the size of the FFT (i.e., oversampling the received
sequence in the frequency-domain), considerably improves the performance of proposed
equalizers. However, for Rician distribution, our approaches are less sensitive to the BEM
resolution. It is also observed that for large values of the Rician factor, increasing the BEM
resolution does not improve the performance of proposed equalizers any more.

Appendix A: Equivalency of Proposed Equalizers

In this appendix, we prove that the proposed time-domain per-tone equalizers (Prop-TPEQ1
and Prop-TPEQ2) are mathematically equivalent to the proposed time-domain block equal-
izer (Prop-TBEQ). Based on (13a) and (17), the Prop-TBEQ uses the following matrix to
estimate the transmitted blocks on all transmit transducers:

Ḡe,MMSE[i] = Rx (G [i]E0)
H
(

G [i]E0 Rx (G [i]E0)
H + Rν

)−1
(38)

Substituting Rν from (14) in (38), the matrix Ḡe,MMSE for white input data and noise reduces
to

Ḡe,MMSE[i] = (G [i]E0)
H

(
G [i]GH [i] + σ 2

ξ

σ 2
s

I Nr (N+L ′)

)−1

(39)

where we have used the equation E0E
H
0 + E−1E

H−1 + E1E
H
1 = I (3Nt N ).

On the other hand, to estimate the transmitted symbol on the kth subcarrier of the i th
OFDM block at the ath transmit transducer, we can use the Prop-TPEQ1 in (30) as

w(a, k)[i] =
(

G(a)
R [i]G(a)H

R [i] + σ 2
ξ

σ 2
s

I Nr (N+L ′) + Rb4 [i]
σ 2

s

)−1

w
(a)
k [i] (40)
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where w
(a)
k [i] = G(a)

R [i]E0e(k). We use (27) and G(a)
R [i] = [G(1, a) T [i], . . ., G(Nr , a) T [i]] T

to express R(a)b4
[i] in (40) as

R(a)b4
[i] = σ 2

s

Nt∑

t=1
t �=a

G(t)
R [i]G(t)H

R [i]. (41)

Substituting R(a)b4
[i] and w

(a)
k [i] in (40) and using the definitions for G(r)

T [i], G[i] and G(a)
R [i]

in (5), (6) and (23) yields

w(a, k)[i] =

⎛

⎜⎜⎝G(a)
R [i]G(a)H

R [i] + σ 2
ξ

σ 2
s

I Nr (N+L ′) +
Nt∑

t=1
t �=a

G(t)
R [i]G(t)H

R [i]

⎞

⎟⎟⎠

−1

G(a)
R [i]E0e(k)

=
(

G[i]GH [i] + σ 2
ξ

σ 2
s

I Nr (N+L ′)

)−1

G(a)
R [i]E0e(k) (42)

In (42), only the term e(k) depends on the subcarrier index k. Considering (42) for different
subcarriers, we obtain

W (a)[i]=
[
w(a, 0)[i], . . .,w(a, N−1)[i]

] H =(G(a)
R [i]E0)

H
(

G[i]GH [i]+ σ
2
ξ

σ 2
s

I Nr (N+L ′)

)−1

(43)

where W (a)[i] contains the equalizers corresponding to all subcarriers of the ath transmit
transducer.

Finally, the equalizer matrix used to recover the transmitted symbols on all subcarriers of
all transmit transducers, based on the minimization of BER, is given by

WBER[i] =
[

W (1) T [i], . . .,W (Nt ) T [i]
] T

=
([

G(1)
R [i], . . ., G(Nt )

R [i]
]
(I Nt ⊗ E0)

)H
(

G[i]GH [i] + σ 2
ξ

σ 2
s

I Nr (N+L ′)

)−1

(44)

Using the definitions for G(r)
T [i], G(a)

R [i] and G[i], we can reduce (44) to

WBER[i] = (G[i]E0)
H

(
G[i]GH [i] + σ 2

ξ

σ 2
s

I Nr (N+L ′)

)−1

(45)

The equalizer matrices in (39) and (45) are the same. Therefore, the proposed BER mini-
mizing equalizer (Prop-PTEQ1) is equivalent to the proposed block MMSE equalizer (Prop-
BTEQ).

In addition, the proposed block MMSE equalizer uses the matrix Ḡe,MMSE[i] as in (38)
to estimate the transmitted symbols on all subcarriers at all transmit transducers. To estimate
the symbols corresponding to the kth subcarriers on all transmit transducers, we may use the
corresponding Nt rows of the matrixḠe,MMSE[i] to obtain the following submatrix:
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Ḡ
(k)
e,MMSE[i] = (I Nt ⊗ e(k)T )Ḡe,MMSE[i]

= (I Nt ⊗ e(k)T )Rx (G [i]E0)
H
(

G [i]E0 Rx (G [i]E0)
H + Rν

)−1
(46)

Comparing the Eqs. (46) and (34a), we conclude that the per-tone MSE minimizing equalizer
(Prop-PTEQ2) is also equivalent to the proposed block MMSE equalizer (Prop-BTEQ).

Appendix B: One-Tap MMSE Equalizer for MIMO–OFDM

In this appendix, we extend the one-tap MMSE equalizer proposed in [30] to MIMO–OFDM
systems. Similar to (5), we express the received block of length N at the r th receive transducer
as

y′(r)[i]=
Nt∑

t=1

Q/2∑

q=−Q/2

Ψ ′
q [i]

[
O ′

1, H ′(r, t)
q [i], O ′

2

]
(I3 ⊗ P)(I3 ⊗ F H )

︸ ︷︷ ︸
G′(r, t)[i]

⎡

⎣
x(t)[i − 1]

x(t)[i]
x(t)[i + 1]

⎤

⎦

︸ ︷︷ ︸
x̃(t)

+ξ ′(r)[i]

=
Nt∑

t=1

G′(r, t)[i]x̃(t) + ξ ′(r)[i] = G′(r)
T [i]x̃ + ξ ′(r)[i] (47)

where y′(r)[i] = [y(r)[i(N + c) + c + d + 1], . . . , y(r)[(i + 1)(N + c) + d]]T , Ψ ′
q [i] =

diag{ [ψq(i(N +c)+c+d+1), . . ., ψq((i +1) (N +c)+d)]}, O ′
1 = 0N ×(N+2c+d−L), O ′

2 =
0N × (N+c−d), H ′(r, t)

q [i] is an N × (N + L) Toeplitz matrix with the first column

[h(r, t)
q,L [i] , 01×(N−1)]T and the first row [h(r, t)

q,L [i], . . . , h(r, t)
q,0 [i], 01 × (N−1)], ξ ′(r)[i] =

[ξ ′(r)[i(N + c) + c + d + 1], . . . , ξ ′(r)[(i + 1)(N + c) + d]]T , G′(r)
T [i] = [G′(r, 1)[i], . . .,

G′(r, Nt )[i]] and other parameters are defined as in (5).
Defining y′[i] = [ y′(1) T [i], . . ., y′(Nr ) T [i]] T , G′[i] = [G′(1) T

T [i], . . ., G′(Nr ) T
T [i]] T

and ξ ′[i] = [ξ ′(1)T [i], . . . , ξ ′(Nr ) T [i]]T , and using (47) we can express the received blocks
(each of length N ) at all receive transducers as

y′[i] = G′[i]x̃ + ξ ′[i] (48)

We estimate the transmitted symbol on the kth subcarrier of the i th OFDM block at the
ath transmit transducer as

x̂ (a)k [i] =
Nr∑

r=1

w(r, a, k)[i]F (k) y′(r)[i] = w′(a, k)H [i](I Nr ⊗ F (k)) y′[i] (49)

where w′(a, k)[i] = [w(1, a, k)[i], . . . , w(Nr , a, k)[i]] H . To obtain the one-tap equalizer
w′(a, k)[i], we define the following MSE cost function

J [i] = E
{ ∣∣∣x (a)k [i] − w′(a, k)H [i](I Nr ⊗ F (k)) y′[i]

∣∣∣
2
}

(50)
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Hence, the MMSE coefficients for the kth subcarrier is obtained by solving ∂J [i]/∂ w′(a, k)

[i] = 0 which reduces to

w
′(a, k)
MMSE[i] =

(
(I Nr ⊗ F (k))(G′[i]Rx̃ G′H [i] + Rξ ′)(I Nr ⊗ F (k)H )

)−1

× (I Nr ⊗ F (k))G′[i]Rx̃ e′(k) (51)

where Rx̃ = E
{

x̃[i]x̃ H [i]
}
, Rξ ′ = E

{
ξ ′[i]ξ ′H [i]

}
, and e′(k) is a (3Nt N ) × 1 unit vector

with a 1 in the position 3N (a − 1)+ N + k + 1.
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